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Continuous dependence of fixed points of condensing maps

Jack K. Hale

Many problems in analysis are concerned with the dependence upon para-

meters of fixed points of maps. For contraction mappings, criteria are

relatively easy to obtain and have been known for some time. In the..study

of solutions of functional differential equations, more general results were

needed by Hale and Cruz [3] and Melvin [8]. Kasriel and Nashed [4] and Cain

and Nashed [1] have also obtained some theorems in this direction under the

name of stability of fixed points of nonlinear mappings. It is the purpose

of this paper to give a rather general fixed-point theorem for condensing

maps depending on a parameter, to prove continuous dependence and to indi-

cate how many of the previous results are special cases.

An interesting theorem on continuous dependence of a fixed point of a

map obtained by means of an asymptotic fixed-point theorem is contained in

the paper of Lopes [6].

We begin with a few definitions and known results. If A is a bounded

set of a Banach space X, define the measure a(B) of noncompactness of a set

B to be a(B) = inf{d>0: B has a finite covering of diameter less than d).

A bounded set B has ct(B) = 0 if and only if the closure B of B is compact.

This concept was introduced by.Kuratowski [5] and later Darbo [2] showed

-that-a(BO~satisfies-the .followinĝ propertiesj ^

i) a(co~B) = ct(B), where co~ B is the closed convex hull of B,

ii) a(B+C) <_ a(B) + a(C),

iii) a(BUC) = max(a(B),a(C)).
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Suppose r is a subset of X and T-: F -> X is a continuous mapping. The

map T is said to be condensing if for any bounded set B C r, a(B) > 0, it

follows that a(TB) < a(B). The map T is said to be an a-contraction if there

is a ke[0,l) such that for any bounded set BClT, ct(TB) <_ka(B). An a-

contraction is necessarily condensing, but the converse may not be true. For

linear operators, the concepts are equivalent. Any mapping which is the sum

of a contraction operator andr a completely continuous operator'is an a-

contractiori. A fundamental result which will be used throughout is the fol-

lowing generalization of Schauder's fixed-point theorem (see Sadovskii [9D

and Martelli [7]).

Lemma 1. If T is a closed bounded convex subset of X and T: F -»• T is con-

densing, then T has a fixed point.

Suppose X,£ are Banach spaces, A is a subset of £, r is a closed

bounded subset of X and T: r x A ->- x is a given mapping satisfying

h,) T(-,X) is continuous for each XeA and there exists a XQeA such

that T(x,X) is continuous at x,X for each xel'.

h„) The equation

(1) x = T(x,X) • • - . • •

for X = X has a unique solution X(^Q) in T.

h ) For every T'C-T, a(r') > 0, there is an open neighborhood B =
3 ""

• B(T') of X such that for any precompact set A'C A .OB, we have

Theorem 1. For each XeAHBCD, suppose (1) has a solution x(X)er. Then

x(X) -»• x(XQ) as X -»• XQ.

Proof. Suppose {XV)C.A 0 B(D is an arbitrary sequence converging to XQ as
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k -> ~, and let x(A, )eF be a solution of (1) for A = A . If F ' = (x(A )},
K - K Jc

choose k so large that AT = {A }d A O B(rf)V Since A' is precompact and

(h ) is satisfied,
d

a(F') = a({T(xx ,AR)} <_ a(T(r« ,A')) < "(T
1)

if a(F') > 0. Since- this is impossible, a(F') = 0 and Fl is precompact.

Since F is closed, there is a subsequence {v, } of {A, -} and zeF such that
K K

x(v, ) -*• z as k -> °°. Condition (h ) implies z = T(z,A ) and (h0) impliesK _L (J 2.

z - x(A_). Since every convergent subsequence of the fx(A, )} must converge to
U • - JC

the same limit, it follows that x(A, ) -> x(A ) as k ->• ». Since the sequence
K U

{A, } was an arbitrary sequence converging to A , the proof of the theorem is
K U

complete.

Corollary 1. Suppose T satisfies (h ) and

h^) T(-,A) is condensing for each AeA, and T(x,A) is continuous at An

uniformly for

Then T satisfies (h1 ) - (lO and the conclusions of Theorem 1 are valid.
X 3

Proof. Since a condensing map is continuous, (h ) implies (h,). Thus we need

only show that (h ) is satisfied. Let B = {A: |A-A | < £}• Uniform continuity

at AQ implies for any e > 0 there is a B(e) > 0 such that |T(x,A)-T(x,AQ) | <

e if AeB.x ,, xef. If T'<C F and a(F') > 0, then T(-,AO) condensing implies

e

6o(FT) and choose e > 0 so small that k+6 < 1. Since

T(x,A) = T(x,AQ) + [T(x,A) - T(x,AQ)],



we have, for any A'CA O B , .,

a(T(r',A')) <_a(T(r',X )) + 2c <_

Thus, (h-) is satisfied and the corollary is proved,o

Corollary 2. If (h ) - (h,.) are satisfied, T is also convex and T:T x.A -*• T,
1 ' J_ O

then there is a solution x(X) of (1) for each XeA f\B(r) and x(X) •*• x(X )

as X •*• X .

Proof. Use Lemma 1 and Theorem 1.

We now give some specific mappings which satisfy the conditions of

Theorem 1 and, in particular, condition (h ). Suppose X, Y,C> are Banach
O

spaces, r is a closed bounded set of X and A is a subset of fc. Suppose

(2) Q: T x A -»• Y

(3) G: r x Q(T,A) x A -»• X

def
T: F x A -»• X, T(x,X) = G(x,Q(x,X),X)

Lemma 2. If Q, G, T are defined as above and for each precompact A'dA

and each precompact Y*<^HQ(r,A) we have

hR) G( • ,y,X) :T -> X is a contraction uniformly with respect to

(y,X):eY' x A'

h_) Q(F,A') is precompact ,
D

then T satisfies condition (h,,

def
Proof. From (hfi), the set Q(F,A') = Y' is compact. Suppose A' is a
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precompact set of A. Then hypothesis (lO implies there is a ke[0,l) such
0

that

|G(x ,y ,X)-G(x ,y ,X) | <^k|x-x| for all (y ,X)eY' x A« .

Therefore, for any T' C T

a ( G ( r ' , Y ' , A ' ) ) < _ k a ( r « ) .

Furthermore,

/

a(T(I",A')) = a( U G(x,Q(x,X),,\))
(x,X)erlxA'

<_a( U G(x,y,X))
(x,y,X)erxY'xAf

= a(G(r,Y',A1)) <_ka(I") .

This proves (h ) and the lemma,o

Now let us make a few more hypotheses on Q, G; namely,

h?) Q(x,x) is continuous in x for each XeA and

Q(x,x) is continuous in (x,X) at (x,XQ)er x A.

hQ) G(x,y,X) is continuous in y for each (x,X)eT x A and G(x,y,X) is-
O

continuous in (y,X) at (x,y,XQ) for each (x,y,X)er x Q(T,A)-x A.

If conditions (ha) - (h ) are satisfied, then the map T(-,X):T -»• X defined by

(4) satisfies (h ). In fact, for any precompact A'C. A, there is a ke[0,l)

such that, for any (x,X)eT x A1, (x,X)eF x A1, we have



T(x,X)-T(x,X)| <_ |G(x,Q(x,X),X) - G(x,Q(x,X),X

|G(x,Q(x,X),X) - G(x,Q(x,X),X)|

<_k|x-x| + |G(x,Q(x,X),X) - G(x,Q(x,X ,X| .

Now one obtains the result by observing that the set A1 = {X } is precompact
K.

if X ->• XQ and A' = {X} is compact for any given XeA.

We thus obtain the following

Theorem 2 [8]. Suppose T: T x A ->• x is defined by (4) and

conditions (hc) - (h0) are satisfied. Then T satisfies (hn) - (h0) and theD o . X o

conclusions of Theorem 1 are valid.

For the special case where G(x,y,X) = S(x,X) + y, we have the following:

Corollary 3 [8]t Suppose T = S + U, S: F x A ->- X, U: F x A -*- x, T satisfies

(h ), (h.) and for each compact'set A' C A

hQ) S(',x) is a contraction uniformly with respect to XeA
1,

h1Q) U(r,A') is precompact.

Then T satisfies (h ) - (h_) and the conclusions of Theorem 1 are valid.
1 o

Corollary _1"[3]. Suppose T is defined as in Corollary 3, satisfies condition

Ch~) of Theorem :li:^ ""---' ::'rr:_.: —

h } S(-,X) is a contraction for each XeA, U(-,X) is continuous for

each XeA..

h ) S(x,X), U(x,X) are continuous at XQ uniformly for xeF.
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Then T satisfies (h ) = (h ) and the conclusions of Theorem 1 are valid.
- L o - - - . _ .

Proof. This follows from Corollary 1.

In a similar manner, one can generalize Theorem 1.2A of [8].

As another application, let us consider a problem of Cain and Nashed [1]

concerning stable solutions of nonlinear equations. In [1], generally locally

convex spaces are considered, but we can see how their results for Banach

spaces can be obtained from Theorem 1. Suppose we consider all continuous

maps A of some open ball U into X. We may then define | | A -A | | =

sup jjj | A^-A^I | . Let S(x,r) = {yeX: | | y-x| |<r} .

Definition. Suppose xneU, A : U -> X and
 A
0xn = yn- The solution x. of A u =

y is said to be stablê  if for any r > 0, S(x,r) OU, there is a d > 0, a > 0

such that for any yeS(yQ,d), An : U -> X, |JA -A || < a, there is an xeS(xQ,r)

such that A x = y.

Without loss in generality, one may assume y = 0. Thus, if A =

I - T , then x is a fixed point of T . If, for a fixed yeX, A : U -*• X, we

define

def
x - TxQ (A^ - AQx) - y = x - T(x,A15y)

then showing that a solution x of Ax = 0 is stable is equivalent to showing

that each of the operators T(x,A ,y) has a fixed point xeS(xQ,r) for every

| |y| | < d, | |A,-A -| L < a. In particular, XQ will be stable if we can show

the fixed points are continuous at y = 0, A^ = AQ. The parameter X in Theorem

1 can be taken as X = (y,A ).

Following Cain and Nashed [1], let A: X -»• X.
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R(x0,A,r) = -sup{||Ax-Ax0||: | |x-x0||=r}

n(xQ,A) = inf{r: R(xQ,A,r)<l}.

If n(x ,T ) = 0, x = T x , then x is an isolated .fixed point of T .

Furthermore, there is an r which may be taken as small as desired so that

| |TOX-XO | | <_R(x 0 ,T 0 , r ) r < r if ||x-x0|| = r .

Consequently, T : 9S(x ,r) ->• S(x>,r). One can now choose r > 0 so small and

a > 0, d > 0 such that co" T(S(xQ,r) .A-̂ y) <C.S(x0,l) for | |y| | < d, l^-Ajl

a. Let p be a retract of S(x ,1) onto S(x ,r) and define F(-,An,y): S(0,l) -^

S(0,l) by F(x,A ,y) = T(p(x),A ,y). Then the fixed points of F(-,A ,y) must

belong to S(xn,r). Furthermore, F(',A ,y) is a condensing map if T(-,A ,y)

is condensing and we have the following consequence of Theorem 1 and Lemma 1.

Theorem 3. If B x = 0, n(x ,I-B )•= 0, then XQ is a stable solution of

B x^ = 0 relative to the class of operators B such that I-B is condensing.

When the operators B are completely continuous, this is Theorem 4.1 of

[1]. Theorem 4.2 of [1] in Banach spaces is also a special case of Theorem. 1

and Lemma 1.
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